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Logarithmic growth of the Statistical
Complexity

Figure: Statistical complexity against time for the hydrogen
velocity signal and the surrogate.



Velocity autocorrelation

Figure: Velocity autocorrelation function for oxygen (red) and
hydrogen atoms.



Spectra of the signals
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Figure: Spectra of the hydrogen and oxygen velocities.
(collaboration with Vladimir Ryabov, Hakodate)



Causal states occurrences
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Figure: Histograms of the times between successive occurrences
of five representative causal states.



Classification of the causal states

”frequent” states About 30 states that occur with the frequency of less than
0.1ps (autocorrelation decay time): do not change with the
signal length

all other states Many less frequent states: grow with the length of the
signal

surrogate signal The same number of states as ”frequent” states
”frequent” spectra Have a maximum at 1ps



Statistical Physics meaning of
Statistical Complexity

phase space points The evolution of the statistical mechanical phase space
points q : qt+1 = Tqt.

Markov dynamics Because of the determinism the dynamics {qt} forms a
Markov chain.

microstate For an ensemble a random variable representing the
current microstate is Q.

macrostate A macroscopic observed variable is a function f of the
microstate Q.

partitioning The function f partitions the phase-space into mutually
exclusive and jointly exhaustive sets, on each of which f
takes a unique value.

observed process The observed process is A = f(Q) and it is not Markovian.
However, a Markovian process can be constructed from the
observed one by building the ε-machine on A. Now the
sequence of the causal states {St} makes a Markov chain.



Cµ = I[Q; S]

Shalizi and Moore show that in this setting the Statistical
Complexity of S quantifies the amount of information
contained in the macrostate about the microstate:

Cµ = I[Q; S],

where I is the mutual information between random
variables X and Y : I[X;Y ] = H[X]−H[X|Y ]; and
H[X|Y ] is a conditional entropy of X given Y :
H[X|Y ] = −∑

P (X)
∑

P (X|Y ) log2 P (X|Y ).



Why Cµ grows?

A situation when a single trajectory of the system with
time covers the phase space: a ”microstate” would consist
of the areas sampled by the trajectory up to time t:
Q = Q(t).
Therefore, Cµ becomes dependent on time and now reflects
the way the trajectory covers the phase space:

Cµ(t) = I[Q(t); S].



hQ is a measure of the whole phase space
The coefficient hQ as a measure of the growth rate:

Cµ = a + hQ log2 T
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Figure: hQ values for: black - the hydrogen velocity, red - the
oxygen velocity, and blue - the instantaneous temperature.



Clusters: different dynamics

Figure: Velocity autocorrelation function for oxygen 3, 7, 15,
52, and pbc water models.



Clusters: different dynamics

Figure: Snapshots of the 3w cluster at 0, 0.78, and 1.42 ps
(relative time) illustrating the process of quick rearrangement
when two molecules have only one hydrogen bond connection
each.



Complexity for the clusters

”frequent” states The number of the ”frequent” states (short time dynamics)
is the same

short time Cµ The probabilities of the ”frequent” states are different,
however, the overall complexity, Cµ is the same

hQ Phase space exploration, hQ is different, especially for 3w:

Table: hQ values for different clusters and pbc

molecular system hQ

3w 0.904± 0.002
7w 0.675± 0.005
15w 0.675± 0.004
52w 0.703± 0.004
pbc 0.658± 0.005
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